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An Equilibrium Model of

Moving-average Predictability and Time-series Momentum

In an equilibrium model with rational informed investors and technical investors, we show

that the moving average of past market prices can forecast the future price, explaining the strong

predictive power found in many empirical studies. Our model can also explain the time series

momentum that the market prices tend to be positively correlated in the short-run and negatively

correlated in the long-run.



1 Introduction

Brock, Lakonishok, and LeBaron (1992) seems the first major academic study to provide convinc-

ing evidence on the stock market predictive power of moving averages of past prices, which are

the key indicators of technical analysis that has been widely used by practitioners (e.g., Murphy,

1999, Schwager, 2012, and Lo and Hasanhodzic, 2010). Lo, Mamaysky, and Wang (2000) further

strengthen the evidence with automated pattern recognition analysis. Recently, Neely, Rapach, Tu

and Zhou (2013) find that technical indicators, primarily the moving averages, have forecasting

power of the stock market matching or exceeding that of macroeconomic variables. Various ratio-

nal models, such as Treynor and Ferguson (1985), Brown and Jennings (1989), Brock and Hommes

(1998), Griffioen (2003), Chiarella, He and Hommes (2006), and Cespa and Vives (2012), show

that past prices are useful for forecasting future prices under informational inefficiency. Behavioral

models, such as DeLong, Shleifer, Summers, and Waldmann (1990) and Hong and Stein (1999),

explain that behavior biases can lead to price trends, which can justify the value of moving aver-

ages that are trend-chasing tools. However, there are no equilibrium models that link the moving

averages directly to future stock returns.

In this paper, we propose a continuous-time equilibrium model with hierarchical information

structure. The model has two interesting implications. First, it provides a theoretical basis for

using the moving averages in an explicit functional form, i.e., the average price divided by the

current price. This functional form not only states that the moving average price is useful for

forecasting the market return, but also it provides a measure of its impact. In contrast, the vast

studies that use the moving averages rely on only an indicator function that indicates merely an

up or down state of the market. The only exception is Han and Zhou (2013), who find the same

specific functional form independently and intuitively. They show that sorting stocks according

to the moving average functional can yield a new trend factor with an average return of about

1.61% per month more than twice the return on the well-known momentum factor (Jagadeesh and

Titman, 1993), and a Sharpe ratio more than twice too.

The second implication of our model is that it offers an equilibrium explanation of the time

series momentum (TSMOM) newly discovered by Moskowitz, Ooi and Pedersen (2012). They

investigate a large number of asset classes, country equity indices, currencies, commodities and
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bonds, and find that an asset’s own past 12 month return predicts its future return in the next

month. As pointed out by Moskowitz, Ooi and Pedersen (2012), while existing theories can offer

explanations for the short-term positive and long-term negative return correlation pattern, they

have two difficulties. First, the correlations of the TSMOM strategies across asset classes are larger

than the correlations of the asset classes themselves. Second, very different types of investors in

different asset markets are producing the same patterns at the same time. For example, in term of

Hong and Stein (1999), if the under-reaction is due to slow information diffusion, then the speed

for the information to spread out should be depending on the specific market mechanism, the

distribution of investors, the coverage of analysts, trading and investment culture, etc. But the

practically optimal lookback window for all the asset classes seems uniformly 12 months, indicating

that the momentum phenomenon is kind of “technical” in the sense that it does not depend on the

nature of specific form of information processing bias and dissemination mechanisms. Interestingly,

this phenomenon fits exactly into our model where the technical investors learn from the markets

by using moving averages of a lag length L = 12 months. When they trade with informed traders,

their collective price impact will not be arbitraged away, and hence the equilibrium price will allow

for a short-term positive return correlation within 12 months, and a long-term negative correlation

beyond.

From a modelling perspective, our model follows closely Wang (1993) who provides the first

dynamic asset pricing model under asymmetric information with a closed-form solution. As in

Wang (1993), we assume that there are two types of investors, the informed ones and the uninformed

ones. While the informed investors know more of the innovations of the economic fundamentals,

the unformed ones only observe the dividends and prices. However, unlike Wang (1993), we assume

that the unformed investors are the technical traders who utilize the historical prices via the moving

average (MA) price instead of an optimal filter based on all the past prices. There are three reasons

for this. First, with the optimal filter, it is not apparent theoretically the role of the moving average

and other technical indicators, and the resulted model is unable to produce the earlier sign-reverting

correlations. Second, many practitioners, who call themselves technical traders or non-discretionary

traders, do use simple tools such as the moving averages to learn about the market and make their

trading decisions accordingly. For example, a simple mechanical trading rule based on the moving

averages can yield 70% correlation with the returns on managed futures industry (Burghardt,
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Duncan and Liu, 2010), which is primarily trend-following and is one of the three best hedge fund

styles that perform well in both good and bad times of the economy (Cao, Rapach and Zhou, 2013).

Third, while learning via the MA is only suboptimal and bounded rational in the model, it is in fact

a good robust strategy in general and can be better than a model-dependent optimal filter under

model or parameter uncertainty (Zhu and Zhou, 2009). Given the technical investors who trade

via the MA here, we, following Wang (1993) with some new techniques, also solve the equilibrium

price along with other functions of interest in closed-form.

The intuition of our model is clear. When the technical investors choose to use the MA for

investment decision making, the informed investors know about it and trade accordingly. Since

the information updating rule used by technical investors is not the most efficient in the model,

and given the uncertainty in asset supply for all investors, the informed investors cannot fully

differentiate between the uncertainty in asset supply and technical investors’ demand, and hence

they cannot fully arbitrage away the impact of the technical trading on the price. As a result, the

market equilibrium price can demonstrate a positive autocorrelation within the lag length of the

MA rule. However, in the long-run, the price reverts to its mean level.

Conceptually, our model is closely related to DeLong, Shleifer, Summers, and Waldmann (1990).

They also assume two types of investors: the rational speculator or “smart money” (referred to as

George Soros) who knows the fundamentals and trade rationally as our informed traders, and the

“positive feedback” traders whose trading decision is to follow price-trends (buy when the price is

up and sell otherwise) as our technical traders. However, in their simple 4-period model, the role

of the MA is unclear, neither the meaning of a trend. In contrast, the MA is an endogenous state

variable in our model for the technical investors to make investment decisions and the MA is priced

in equilibrium. As a result, its role in forecasting the market return is characterized explicitly as a

simple functional of the MA level divided by the current price.

The paper proceeds as follows. In section 2 lays out the assumptions of the model. Section

3 presents the equilibrium solution. Section 4 analyzes the implications of the model. Section 5

examines how the model explains both the MA predictability and the TSMOM. Section 6 concludes.
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2 The Model

Following Wang (1993), we consider an economy with a single risky asset which pays out its earnings

as a random stream of dividend. There is a market for the asset which is traded as an infinitely

divisible security and the market is populated with two types of traders: the well-informed rational

investors and less informed technical investors who trade based on the MA signal (together with

other public signals). As in Wang (1993), we assume a fluctuating total amount of security, which

can be motivated by various realistic considerations, such as liquidity or noise trades, which serves

mainly as a convenient modeling device to introduce uncertainty to the market so the equilibrium

price is not fully revealing.

The information structure is hierarchical, that is, the information set of the informed investors

encompasses that of the technical investors. The model is set in continuous-time with infinite

horizon. Wang (1993) uses similar model to study the impact of information asymmetries on the

time series of prices, risk premiums, price volatility and the negative autocorrelation in return. In

contrast, our model, featuring the technical traders, aims at explaining the use of the MA and

the short-run positive and long-run negative return correlations. Before pursuing the model any

further, we address first two common motivation questions.

What are the theoretical reasons for the value of using the MA signal in the real world? The

success of the MA depends on price trends which at least four types of models can explain. First,

when investors do not receive information at the same time or heterogeneously informed, Treynor

and Ferguson (1985) and Brown and Jennings (1989) demonstrate that past prices enable investors

to make better inferences about future prices, and Grundy and McNichols (1989) and Blume, Easley,

and O’Hara (1994) show that trading volume can provide useful information beyond prices. Second,

if there is asset residual payoff uncertainty and/or persistence in liquidity trading, Cespa and Vives

(2012) show that asset prices can deviate from their fundamental values and rational long-term

investors follow trends. Third, due to behavioral biases, Hong and Stein (1999) explain that, at the

start of a trend, investors underreact to news; as the market rises, investors subsequently overreact,

leading to even higher prices. Fourth, with the presence of positive feedback traders (who buy after

prices rise and sell after prices fall) as observed by hedge fund guru George Soros (2003), DeLong,

Shleifer, Summers, and Waldmann (1990), and Edmans, Goldstein, and Jiang (2012) show that
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there can be rational price trends. Empirically, Moskowitz, Ooi, and Pedersen (2012) find that

pervasive price trends exist across commonly traded equity index, currency, commodity, and bond

futures. Insofar as the stock market is not a pure random walk and exhibits periodic trends, the

MA signal should prove useful the it is primarily designed to detect trends.1

Why do most investors in practice use the MA signal instead of using a time series model to

capture price trends? The moving averages are simple and naive trend capturing tools. From

behavior point of view, people at large prefer simple rules than complex ones. As put by the

technical guru John Murphy (1999) in his famous book, “Moving average is one of the most versatile

and widely used of all technical indicators. Because of the way it is constructed and the fact that it

can be so easily quantified and tested, it is the basis for many mechanical trend-following systems

in use today...... Chart analysis is largely subjective and difficult to test. As a result, chart analysis

does not lend itself that well to computerization. Moving average rules, by contrast, can easily be

programmed into a computer, which then generates specific buy and sell signals.” However, the

use of the MA seems quite rational too. A time series model such as an autoregressive process

requires a large amount of stationary data to estimate accurately, but the real world data are

non-stationary with changing regimes and parameters, and so it is often the case complex models

underperform simple models out-of-sample. For examples, DeMiguel, Garlappi and Uppal (2009)

show a simple equal-weighting portfolio rule beats sophisticated theory strategies, Timmermann

(2006) and Rapach, Strauss and Zhou (2010) find that a simple average forecast provides better

forecasts from complex econometric models. In term of the MA, Zhu and Zhou (2009) show that

it is a robust approach compared with sophisticated ones.

Hence, the technical traders in our model are assumed to make their investment decisions using

the MA. Similar assumptions are also made in Griffioen (2003), and Chiarella, He, and Hommes

(2006). In our model, likely in practice too, the technical traders are synchronized and coordinated

to form a critical mass, and their action do not cancel each other out.

Formally, we make below the same assumptions as Wang (1993), except Assumption 5 which

specifies the MA as the learning tool for the technical traders instead of an optimal filter.

Assumption 1. The market is endowed with a certain amount of one risky asset, each unit of

1Learning from market prices is valuable both theoretically and empirical not only to investors, but also to the
government (see, e.g., Bernanke and Woodford, 1997, Bond and Goldstein, 2012, and references therein.)

5



which provides a dividend flow given by

dDt = (πt − αDDt)dt+ σDdB1t, (1)

where πt is the mean level of dividend flow given by another stochastic process

dπt = απ(π̄ − πt)dt+ σπdB2t, (2)

where we assume that B1t and B2t are independent.

This is a standard dividend process for the utility below to have closed-form solutions. When

αD > 0, πt/αD is the short-run steady-state level of the dividends. The mean-reversion in πt allows

business cycles in the economy.

Assumption 2. The supply of the risky asset is 1 + θt with

dθt = −αθθtdt+ σθdB3t, (3)

where B3t is another Brownian Motion independent from both B1t and B2t. Assumption 2 normal-

izes the long-run stationary level of the supply of the risky asset to 1, whereas θt represents shocks

away from that level which implicitly allows liquidity trades outside the model.

Assumption 3. The claim on the risky asset is infinitely divisible and shares are held by the

investors in the economy. Shares are traded in a competitive stock market with no transaction cost.

The stock is the only security traded in the market. Let P be the equilibrium price of the stock.

Assumption 4. There is a risk-free investment to all investors with a constant rate of return

1 + r (r > 0).

While the informed investors observe the mean grow rates of the dividends, the technical in-

vestors do not observe them. But both know the paths of dividends and price. However, the

technical investors infer from the historical prices via the MA, that is,

At ≡
∫ t

−∞
exp [−α(t− s)]Psds, (4)

with α > 0. We use a exponentially weighted moving average rather than a simple moving average

with sampling window to get close-form solution. The parameter α controls the size of moving

average window. Note that

dAt = (Pt − αAt)dt, (5)
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which is convenient for analytical analysis.

Assumption 5. There are two types of investors: the informed and the technical. The in-

formed investors observe all state variables while technical investors only observe dividend and

price. Formally, F i(t) = {Dτ , Pτ , πτ : τ ≤ t} is the informed investors’ information set at time t,

and

(1, Dt, Pt, At)

is the technical investors’ information set. Let w be the fraction of the uninformed investors.

Assumption 6. The structure of the market is common knowledge.

Assumption 7. The investors have expected additive utility with constant absolute risk aversion

(CARA) conditional on their respective information set, E[
∫
u(c(τ), τ)dτ |·], with

u(c(t), t) = −e−ρt−c(t), (6)

where ρ is the discount parameter and c(t) is the consumption rate at time t.

3 Equilibrium

In this section, we solve for the equilibrium of the economy defined in previous section. The

equilibrium concept is that of rational expectations developed by Lucas (1972), Green (1973),

Grossman (1976), among others. Even though there is a certain bounded rationality due to cost to

optimal learning, the model can still be viewed as a rational one because there is no resort to the

use of any individual psychological bias.

The main result is the following:

Proposition: In an economy defined in Assumptions 1-7, there exists a stationary rational expec-

tations equilibrium. The equilibrium price function has the following linear form:

Pt = p0 + p1Dt + p2πt + p3θt + p4At, (7)

where p0, p1, p2, p3 and p4 are constants determined only by model parameters.

Interestingly, the equilibrium price, like Wang (1993), remains a linear function of the same

state variables, except that At plays now the role of the estimation error of the dividend growth
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πt. Economically, it is clear that p0, p1 and p2 are all positive, reflecting the positive price impact

of the state variables. However, p4 can be either positive or negative. Note that the solution to

Equation (??) implies that

dAt = (Pt − αAt)dt

= p0 + p1Dt + p2πt + p3θt + (p4 − α)At. (8)

Due to the stationarity of Dt, πt and θt, it is easy to show that a solution exists when p4 < α.

Our scheme of prove the proposition is to assume the price as given in (??), solve the optimal

demand for the stock for both informed and technical investors, and by imposing the market

clearing condition, we show the price exists in equilibrium by solving for parameters p0, p1, p2, p3

and p4. We will provide the proof of the proposition next and then explore further its implications

in Sections 4 and 5.

3.1 Informed Investor

We first describe the investment problem faced by informed investors given the price process in

Equation (??). They face the investment opportunity defined by the excess return of one share of

stock:

dQ = (D − rP )dt+ dP. (9)

The information set and the investment opportunity for the informed investors are given in the

following lemma:

Lemma 1: For informed investors the information set are given by the state variables Ψi =

(1, Dt, πt, θt, At)
T , which satisfies the following SDE:

dΨi = eiΨΨ
idt+ σiΨdB

i
t, (10)

where Bi
t is a 5-dimensional Brownian Motion, and eiΨ, σ

i
Ψ ∈ R5×5 constant matrices, all of which

are defined in Appendix ??. Further, the investment opportunity defined in Equation (??) for

informed investors satisfies the stochastic differential equation:

dQ = (D − rP )dt+ dP = eiQΨdt+ σiQdB, (11)

with eiQ ∈ R5×1 and σiQ ∈ R5×1 which are given in Appendix ??.

QED.
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The informed investors’ optimization problem is

max
ηi,ci

E

[
−
∫ ∞

t
e−ρs−c(s)ds|F i

t

]
s.t. dW i = (rW i − ci)dt+ ηidQ. (12)

Let J i(W i, Dt, πt, θt, At; t) be the value function, then it satisfies the HJB equation

0 = max
c,η

[
−e−ρt−c + JW (rW i − ci + ηieiQΨ) +

1

2
σiQσ

iT
Q ηi2JWW + ηiσiQσ

iT
Ψ JWΨ

]
−ρJ + (eiΨΨ)TJΨ +

1

2
σiΨJΨΨσ

iT
Ψ . (13)

The solution to the optimization problem is provided in the following theorem:

Theorem 1: Equation (??) has a solution of the form:

J i(W i, Dt, πt, θt, At; t) = −e−ρt−rW− 1
2
ΨiTV iΨi

, (14)

with Ψi = (1, Dt, πt, θt, At)
T , and V i ∈ R5×5 a positive definite symmetric matrix. The optimal

demand for stock is given by

ηi = f iΨi = f i0 + f i1Dt + f i2πt + f i3θt + f i4At, (15)

where f i0, f
i
1, f

i
2, f

i
3 and f i4 are constants.

Proof. See Appendix ??.

The theorem says that, given the model assumptions, the informed investors’ demand for stock

is a simple linear function of the fundamental variables, Dt, πt, θt, as well as the technical variable

At. The result is very similar to the one in Wang (1993) except that the estimation error there is

now replaced by At, the trading signal of the technical traders.

3.2 Technical Investors

Technical investors are in a different situation from the informed ones in that they face different

information set and different perceived investment opportunity. In particular, they do not observe

state variable πt as the informed investors do. However, they do know the dynamics of the pro-

cesses. In our setting, they use MA signal of past stock prices together with the other observables

(Dt, Pt) to infer πt, that is, they learn about πt from its projection onto their information set

Ψu = (1, Dt, Pt, At). Specifically, they use the following linear regression to infer π, denoted as πu,

πut = β0 + β1Dt + β2Pt + β3At + σuut. (16)
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With the insights from Wang (1993), we assume that the technical investors, who don’t observe πt,

know the process that drives its dynamics, and hence they can infer the unconditional linear regres-

sion coefficients in Equation (??). The technical details for computing the parameters β0, β1, β2,

β3 and σu are given in the Appendix ??.

Given the price in Equation (??), the technical investors’ estimation of the state variable θt,

defined as θut , can be inferred from the price via

θut =
1

p3
[Pt − (p0 + p1Dt + p2π

u
t + p4At)]

= γ0 + γ1Dt + γ2Pt + γ3At −
p2
p3

σuut, (17)

where the parameters γ0, γ1, γ2 and γ3 are given in Appendix ??.

Define

π̂t = β0 + β1Dt + β2Pt + β3At, (18)

θ̂t = γ0 + γ1Dt + γ2Pt + γ3At. (19)

The dynamics of Dt for technical investor is then

dDt = (π̂t + σuut − αDDt)dt+ σDdB1t

= (π̂t − αDDt)dt+ σDdB1t + σudZt

= (π̂t − αDDt)dt+ σ̂DdB
u
1t,

(20)

where Zt is defined as Zt =
∫ t
0 usds, which is another independent Brownian motion with ut the

white noise in regression equation (??). The third equality in Equation (??) has used

σ̂DdB
u
1t = σDdB1t + σudZt, (21)

with

σ̂2
D = σ2

D + σ2
u. (22)

We define another state variable

Λt = p2πt + p3θt, (23)

which is observable by technical investors through observing the equilibrium price and dividend.
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We have

dΛt = (p2απ(π̄ − π̂t)− p3αθθ̂t)dt

+p2(σπdB2 − απσudZt) + p3(σθdB3 + αθ
p2
p3

σudZt)

= (p2απ(π̄ − π̂t)− p3αθθ̂t)dt+ σ̂ΛdB
u
2t, (24)

with

σ̂ΛdB
u
2t = p2(σπdB2t − απσudZt) + p3(σθdB3t + αθ

p2
p3

σudZt)

= p2σπdB2t + p3σθdB3t + (αθ − απ)p2σudZt (25)

and

σ̂2
Λ = (p2σπ)

2 + (p3σθ)
2 + (αθ − απ)

2p22σ
2
u. (26)

Based on Equations (??) and (??), the correlation between dBu
1t and dBu

2t, defined as

Var(dBu
1t, dB

u
2t) ≡ ϱdt,

can be written as

ϱ =
p2σ

2
u(αθ − απ)

σ̂Dσ̂Λ
. (27)

With the above discussion, we summarize the investment environment faced by the technical

traders as in the following lemma:

Lemma 2: The state variable set observed by technical investors, Ψu = (1, Dt, Pt, At)
T , follows a

stochastic differential equation

dΨu = euψΨ
udt+ σuΨdB

u
t , (28)

where Bu
t = (0, Bu

1t, B
u
2t, 0), with Bu

1t and Bu
2t defined in Equations (??) and (??), and euΨ and σuΨ

given by

euΨ =


0 0 0 0
β0 β1 − αD β2 β3
q0 q1 q2 q3
0 0 1 −α

 , σuΨ =


0 0 0 0
0 σ̂D 0 0

0 p1σ̂D + ϱσ̂Λ
√

1− ϱ2σ̂Λ 0
0 0 0 0

 . (29)

The investment opportunity is

dQ = (D − rP )dt+ dP

= euQΨ
udt+ σuQdB

u
t ,

11



with euQ and σuQ defined as

euQ =
(
q0 1 + q1 q2 − r q3

)
, σuQ =

(
0 p1σ̂D + ϱσ̂Λ

√
1− ϱ2σ̂Λ 0

)
. (30)

Proof: See Appendix ??.

Note that, technically, in order to derive a linear equilibrium price in closed form, the demand

function, and hence the investment opportunity set, should be in the state variable set. By adding a

state variable At to the functional form of the price, Equation (??) guarantees that the investment

opportunity set is in the state variable set. To solve the technical investors’ optimization problem,

let W u be the wealth of a technical investor’s wealth, ηu be the holding of stock and cu be the

consumption. Then the investor’s optimization problem is

max
ηu,cu

E

[
−
∫ ∞

t
e−ρs−c(s)ds|Fu

t

]
s.t. dW = (rW u − cu)dt+ ηudQ. (31)

Let Ju(W u,Ψu; t) be the value function, then it solves the following HJB equation,

0 = max
cu,ηu

[
−e−ρt−c

u
+ JuWu(rW u − cu + ηueuQΨ

u) +
1

2
σuQσ

uT
Q ηu2JWuWu + ηuσuQσ

uT
Ψ JuWuΨu

]
−ρJu + (euΨΨ

u)TJuΨ +
1

2
σuΨJ

u
ΨuΨuσuTΨ . (32)

The solution is provided by

Theorem 2: Equation (??) has a solution of the following form,

Ju(W u, Dt, Pt, At; t) = −e−ρt−rW
u− 1

2
ΨuTV uΨu

, (33)

with

Ψu = (1, Dt, Pt, At)
T , (34)

and V u ∈ R4×4 a positive definite symmetric matrix. The optimal demand for stock is given by

ηu = fu0 + fu1Dt + fu2 Pt + f i3At, (35)

where fu0 , f
u
1 , f

u
2 and f i3 are constants.

Proof. See Appendix ??.

Theorem 2 says that the technical investors’ demand for stock is a linear function of state

variables, Dt, Pt, observable to them, and At, the technical indicator they use. Note that, in
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contrast, the price Pt is not in the demand function of the informed investors because, to them,

θt and Pt are equivalent in terms of information content. On the other hand, technical investors

observe neither πt nor θt, and hence they can only pin down their demand through the price function

Pt. Indeed, to them, Pt provides new information.

3.3 Market Clearing

Given Equations (??) and (??), the demands of stock by informed and technical investors, the

market clearing condition requires

ηi + ηu = 1 + θt,

or equivalently,

(1− w)[f i0 + f i1Dt + f i2πt + f i3θt + f i4At] + w[fu0 + fu1Dt + fu2 Pt + fu3At] = 1 + θt. (36)

Substitute Pt in (??) into above, we obtain

(1− w)f i0 + w(fu0 + fu2 p0) = 1,

(1− w)f i1 + w(fu1 + fu2 p1) = 0,

(1− w)f i2 + w(fu2 p2) = 0,

(1− w)f i3 + w(fu2 p3) = 1,

(1− w)f i4 + w(fu3 + fu2 p4) = 0.

(37)

The solution to Equation (??) determines the coefficients p0, p1, p2, p3 and p4 for the price function

of (??). It is easy to show that a unique solution exists under general conditions. This completes

the proof of the main proposition of our paper.

If all the investors are informed, i.e., w = 0, there is an explicit solution to the problem with

the parameters in Equation (??) given as

p0 = Φ+ p∗0 =
αππ̄

r(r + αD)(r + απ)
−

[
σ2
D

(r + αD)2
+

σ2
π

(r + αD)2(r + απ)2

]
,

p1 = p∗D =
1

r + αD
,

p2 = p∗π =
1

(r + αD)(r + απ)
,

(38)

p3 < 0 and p4 = 0. This reduces to the solutions previously given by Campbell and Kyle (1993)

and Wang (1993).
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Other than the special case, there are no explicit solutions to the constants in general. But the

associated Ricatti algebraic equations can be easily solved by using the Matlab function CARE,

and then the solution to the equations (??) can be solved via any nonlinear least square solver.

4 Price, Trading and Comparative Statics

In this section, we examine the properties and implications of the equilibrium price. To better

characterize the solution, we re-arrange Equation (??) as

Pt = p+ pDDt + pππt + pθθt + pmv(Pt − αAt), (39)

with

p0 =
p

1− pmv
, p1 =

pD
1− pmv

, p3 =
pπ

1− pmv
, p4 = − αpmv

1− pmv
. (40)

Since we are looking for the stationary solution for Pt, the last term of Equation (??) has mean 0.

Notice that the last term in Equation (??) is a well-known technical indicator called MACD, the

moving average convergence/divergence indicator created by Gerald Appel in the late 1970s, which

is used to spot changes in the strength, direction, momentum, and duration of a trend in a stock’s

price. Intuitively, given

dAt = (Pt − αAt)dt,

the MACD can be understood as the “speed” of the MA: when it is positive (negative), the trend

of the MA is moving up (down). If there is indeed a trend or predictability in the price return (as

in this model), the MACD is indeed effective to detect the trend by filtering out the noise term.

Note that pmv needs to be less than 1 to make the solution stationary. When pmv > 0, the price

process in (??) indicates that the MA rule exhibits a trend-following type of behavior; while when

pmv < 0, the MA signal is used for reverse trading.

In the following subsections, we characterize the equilibrium price in our model, examining the

impact of information structure, the trading strategy and the comparative statics of the model

parameters.
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4.1 Stock Price and Information Structure

In our model, the parameter w characterizes the information structure of the economy. By changing

w, we can see how information structure can impact on the prices. The base case parameter is set

at

r = 0.05, ρ = 0.2, π̄ = 0.85, σD = 1.0, σπ = 0.6, σθ = 3.0, απ = 0.2, αθ = 0.4, αD = 1.0.

Table ?? presents the numerical solution, examining price impact of information structure. When

w = 0, the numerical solver gives the same the parameters as the explicit formula given in Equation

(??). Panel A of Table ?? shows the (re-arranged) equilibrium price parameters in Equation (??)

with the base case parameters for α = 1. The price sensitivity to Dt, measured by pD, increases

from 0.9526 to 2.3489 when the ratio of technical investors increases from 0 to 1, while the price

sensitivity to πt, measured by pπ, decreases from 3.8095 to 0. In indeed, the price does not depend

on πt when no one in the market can observe it. The price sensitivity to θt’s, the parameter pθ, is

negative and increasing in magnitude as the number of technical investors increases. This is due

to the fact that technical investors infer the combination of Λ ≡ pππ + pθθ from the price. If they

assign smaller portion of Λ to π, they must infer from the price that a larger portion of the Λ is

contributed by θ, hence larger (in magnitude) the pθ. The constant parameter p is not monotone

in relation to w, it increases from 6.8209 at w = 0 to 21.6172 at w = 0.5, and then decreases to

4.8052 when w = 1.

The most interesting part is the price sensitivity to MACD, the parameter of pmv, which is

relatively small due to the low regression parameter β3 in the regression of (??) that the technical

investors use to infer πt, making the technical investors more conservative in asset allocation based

on MA. A caveat is that, the small sensitivity to MA in the regression, and hence small pmv, which

is due to the assumption of zero correlation among state variables, is not an important feature

of the model. We can otherwise assume that the state variables are correlated, and/or that the

technical traders use the MA rule in a more prominent way, but these various assumptions do not

alter the main insights of the model that MA signal is priced. Moreover, if we increase the MA

window and set α = 0.1, the price sensitivity to MACD is much increased, as demonstrated in

Panel B of the table.
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4.2 Trading Strategy

To understand the price behavior, specifically the term involving MACD, we need to understand

the trading strategy of each group of investors. In our setting, we define trend-following (contrar-

ian) strategy as a positive (negative) feedback strategy in the sense of DeLong, Shleifer, Summers,

and Waldmann (1990). Hence, a strategy positively (negatively) correlated to the MACD, or

equivalently negatively (positively) correlated to At, is a trend-following (contrarian) strategy. It

is important to keep in mind that the equilibrium price solution is a stationary one, hence the

aggregate behavior of the market has to be contrarian, otherwise the price will blow up (evidenced

by, eg, the market crash of 1987 when trend-following trade due to portfolio insurance increased

dramatically). When market is dominated by informed investors, the market price can sustain

certain portion of trend-following strategy by technical investors as long as the majority, the in-

formed investors, are contrarian; when market is dominated by technical investor, they have to be

contrarian otherwise the price blows up in the long run.

We examine a numerical example in Table (??). It is important to notice the sign of pmv. When

α = 1, pmv is positive for small w and becomes negative when w increases to 0.3. The positive pmv

implies a trend-following price behavior, while negative pmv implies a contrarian. The portfolio

demand by informed and technical investors are presented in Panel A of Table ??. In the table, we

define the portfolio demand in terms of

MACDt = Pt − αAt,

and

Λt = Pt − (p− pDDt − pmvMACDt),

hence the portfolio demand by informed investors of Equation (??) and technical investors of

Equation (??) can be expressed as

ηi = gi0 + gi1Dt + gi2πt + gi3θt + gi4MVt,

ηu = gu0 + gu1Dt + gu2Λt + gu3MVt,

where gi’s and gu’s are the demand loading on state variables. It demonstrates clearly that the

positive (negative) pmv in Table ?? (α = 1) is driven by positive (negative) demand by technical

investors’ portfolio loading on the MACD. To examine what is driving the sign of gu3 , we note
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that gu3 is approximately equal to q3 ≈ p1β3, where p1 > 0, hence it has the same sign as β3, the

regression slope of πt on At in Equations (??). Panel B of the table shows numerically the regression

coefficients of Equation (??) and (??) used by technical investors. Indeed, it shows that when w

is relatively small, β3 is negative, which says that high (low) At (relative to Pt) implies low (high)

value πt, hence the demand from technical investor for the MACD is negative, and the technical

investors portfolio demand exhibit trend-following behavior; on the other hand, when w is bigger,

high (low) At implies high (low) πt, the technical investors exhibit contrarian behavior. Note that

the informed investors are always on the opposite side of the trade to the technical, exhibiting the

opposite trading behavior.

In summary, the intuition from the model is that, when the weight of the technical investors

are small, the usual trend following MA strategy is profitable; when more investors are using the

trend following MA strategy, it becomes unprofitable.

4.3 Comparative Statics

In this subsection, we examine the how the model parameters impact on the equilibrium price.

Table ?? examines the comparative statics of the price with respect to the persistence parameter

for π, απ. In this table, we set α = 0.1. Panel A shows the case for απ = 0.1 while Panel B the

base case with απ = 0.2. This parameter has big impact on price. For example, when w = 0.5,

p = −5.6116 for απ = 0.1, and p = 16.2126 for απ = 0.2. When πt is more persistent with smaller

απ, the price is more sensitive to πt and θt, while less sensitive to MACD.

Table ?? examines the impact of parameter σπ on the price. Panel A is based on σπ = 0.8 and

Panel B the base case parameter of σπ = 0.6. There are two points to notice. First, the price is

much reduced for increased σπ due to higher risk premium. Second, the market can sustain more

technical investors with trend following trading strategy. pmv is positive up to w = 0.7 in Panel

A. This is due to the fact that the technical investors are more conservative in using MACD signal

when πt is more volatile and the regression R2 is smaller.

Table ?? examines the impact of MACD coefficient α on price. We set w = 0.1 with all base

case parameters except for σπ = 0.8. The main impact of α is on the sensitivity to MACD signal.

pmv decreases dramatically from 0.0234 to 0.0007 when α increases from 0.1 to 12.
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Table ?? examines the implication of w and α on the stock price volatility and the risk premium.

From (??), the price process

dPt = p1dDt + p2dπt + p3dθt + p4dAt = µpdt+ σpdZt, (41)

with the instantaneous volatility defined as

σp =
√

(p1σD)2 + (p2σπ)2 + (p3σθ)2. (42)

Recall the investment opportunity is

dQ = (D − rP )dt+ dP = eQΨdt+ σQdBt. (43)

Following Wang (1993), we can define the risk premium as eQΨ/P . Since both the numerator and

denominator are time-varying, we take the average

P̄ = p+ pDπ̄ + pππ̄, (44)

Ψ̄ = (1, π̄, π̄, 0, P̄ /α)T . (45)

Then the risk premium is

RP =
eQΨ̄

P̄
, (46)

where eQ is defined in Equation (??). Table ?? presents the σp and RP in terms of varying w and

α. The price volatility increases as w increases, while the RP is not monotone as it varies in the

same way as p.

5 MA Predictability and Momentum

In this section, we show first that the MA divided by price is theoretically a predictor of the stock

returns, and then explain why the lagged stock returns can also predict the returns, a phenomenon

of the times series momentum.

5.1 Predictability of MA

The main implication of our model is that the stock price can be predicted by MA signal. Specifi-

cally, taking finite difference in Equation (??) with discrete time interval ∆t, and using Equation

(??), we obtain

∆Pt = p1∆Dt + p2∆πt + p3∆θt + p4(Pt − αAt)∆t.
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After dividing by price, we have the following predictive regression on the moving average,

rt+1 = α+ β
At
Pt

+ ϵt, (47)

where impact of other variables are summarized in the noise term of the regression. In empirical

applications, At are easily approximated by the simple moving average

At =
1

L

L−1∑
i=0

Pt−i∆t, (48)

where L is lag length or the moving average window.

Theoretically, our model states that At/Pt should be a predictor of the market return. If

the model is applied to asset classes, similar conclusions hold. However, in the real world, the

proportion of technical traders can change over time, and hence the slope on At/Pt may not always

be positive.

Table ?? reports the predictive regression of monthly returns on the S&P500 stock index on

the daily moving average prices of the index over January 1963 and December 2012. The starting

month of the regression is the first month after January 1963 for which At is computable with

lag L = 10 days and up to 200 days, which are the popular lag lengths used in practice and in

Brock, Lakonishok, and LeBaron (1992). It is interesting that the slopes are all positive, indicating

that trend-following is the right strategy in practice for the technical traders. When L = 10 and

L = 100, the results are statistically significant at the 1% and 5% levels, respectively. This may

suggest that there are both short-term and long-term trend-followers, and not many in between.

The statistical evidence is remarkable since the stock market as a whole is known notoriously very

difficult to predict. Very often, the evidence of any predictor is much stronger by applying to

cross-section stocks or portfolios and then aggregating together.

Indeed, cross-sectionally, Han and Zhou (2013) run similar regressions by using all of the moving

averages, and find that the resulted trend factor is both highly statistically and economically

significant. It not only more than doubles the average return of the well-known momentum factor

(Jagadeesh and Titman, 1993) which occurs in global markets too (Hou, Karolyi and Kho, 2011),

but also explains much better the cross-section returns. As reviewed in the introduction, there are

various economic reasons for why the market or stocks can trend. Our paper not only provides a

new theoretical explanation based on the presence of technical investors, but also shows explicitly

how the moving average can be used to forecast future returns.
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5.2 Time Series Momentum

The time series momentum (Moskowitz, Ooi and Pedersen, 2012) that the past 12 month return

predicts that of the next month can be understood easily if we can show that the model allows for

short-term positive price correlation at a lag of L about one year and long-term negative correlation

beyond. Mathematically, it suffices to show that the price autocovariance has such a pattern.

Analytically, the autocovariance of the price in our is

< Pt+τ − Pt, Pt − Pt−τ >

= ADg(αD, τ) +BDg(α1, τ) +Aπg(απ, τ) +Bπg(α1, τ) +Aθg(αθ, τ) +Bθg(α1, τ), (49)

where the parameters AD, BD, Aπ, Bπ, Aθ, Bθ are derived in the Appendix ??, and

g(α, τ) = −(1− e−ατ )2.

To see why fully rational model such as Wang (1993) can only generate negative autocorrelation2,

note that in Wang (1993), the parameters of BD, Bπ and Bθ are all zeroes because those are

interaction terms between state variables and the MA signal, and the signs of AD, Aπ and Aθ are

the same. Hence, the autocorrelations always have the same sign for any τ in Wang (1993). In

our model, all parameter A’s and B’s can have different signs due to the interaction between state

variable mean reversion speed and the lag length of the MA signal. In particular, the parameter p4

needs to be positive to generate this autocovariance pattern. We show numerically an example in

Figure ??. The autocovariance is positive up till τ = 0.5 year and then become negative for longer

horizons. This is largely consistent with the momentum literature that past winners over 6 to 12

month outperforms over the next 3–12 months.

Panel A of Table ?? provides the regression results for returns on S&P500 on the lagged returns

over January 1963 and December 2012. While the slopes on past 2 and 6 month returns are

negative, the slope on the lagged 12 month return is positive that is consistent with Moskowitz,

Ooi and Pedersen’s (2012) TSMOM finding (the results are similar if their slightly different time

periods of the data are used). Although the slope is not statistically significant, Moskowitz, Ooi

and Pedersen (2012) show that a portfolio of more asset classes, which are of the same pattern, will

2Wang (1993) can generate either positive or negative autocovariance for one parameter set, but cannot generate
the pattern of short-run positive and and long-run negative autocovariance for any set of parameter.
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be both economically and statistically significant. In light of our model, a possible explanation for

the strong continuation of the TSMOM is that there are substantial number of technical traders

across asset classes who use moving averages of the same lag length of roughly one year.

More generally, one may imagine that there are momentum traders with different investment

horizons in the real world, so that their time series predictive lags are different. Then we may run

the same regression on past returns of many lag lengths. To avoid over fitting the regression, we

can impose a simple restriction that the slopes are the same on all lags up to L. This amounts to

regressing the returns on the moving average of past returns with the lag length L. Panel B of Table

?? reports the results. The statistical significance is much greater than before. This interesting

result may suggest a new way to improve the time series momentum even further.

6 Conclusions

This paper provides a theoretical explanation to both predictability of the moving average (MA) of

past stock prices and the time series momentum (TSMOM). While the MA predictability has been

studied by researchers and utilized by practitioners for a long time, the TSMOM was only discovered

recently by Moskowitz, Ooi and Pedersen (2012). Empirically, both of them provide today perhaps

the strongest evidence on predictability and abnormal returns. Our equilibrium explanation is

based on an economy in which there are both rational informed investors and technical investors

who use MA as one of their trading signals. In our model, the price is not fully revealing, and so

the MA signal is priced risk factor which depends on the population ratio of technical traders in

the market. When the population ratio is small, technical investors will behave as trend-followers.

However, when the population ratio is large, they can be contrarians. The model not only explains

the predictability of the MA, but also identifies explicitly the functional form of the MA that

predicts the market. In addition, the model can also explain Moskowitz, Ooi and Pedersen (2012)’s

TSMOM that the market prices tend to be positively correlated in the short-run and negatively

correlated in the long-run, and that the past 12 month return predicts the future next month return

across asset classes.

Since our exploratory model has a number of simplifying assumptions, it will be of interest to

extend the model by relaxing some of them. For examples, it will be important to allow the portion
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of technical traders to change over time. In practice, it is almost always the case that a new trend,

a bubble in particular, starts with relatively few investors, then it attracts more and more trend-

followers over time, and eventually the trend-followers vanish completely as the trend reverses. It

will also be important to allow different types of technical traders, arbitragers, market-makers, and

investors of various horizons, as it is the case in the real world.
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A Appendix

In this Appendix, we provide detailed proofs of the results.

A.1 Proof of Lemma 1

The state variables of the economy is given by

dDt = (πt − αDDt)dt+ σDdB1t,

dπt = απ(π̄ − πt)dt+ σπdB2t,

dθt = −αθθtdt+ σθdB3t.

(A1)

The set that determines the informed investors’ opportunity set is

Ψ = (1, Dt, πt, θt, At)
T , (A2)

which satisfies the following vector SDE,

dΨ = eΨΨdt+ σΨdBt, (A3)

where Bt is a 5-dimensional Brownian Motion, eΨ and σΨ ∈ R5×5 are constant matrices,

eΨ =


0 0 0 0 0
0 −αD 1 0 0

αππ̄ 0 −απ 0 0
0 0 0 −αθ 0
p0 p1 p2 p3 p4 − α

 , (A4)

and

σΨ =


0 0 0 0 0
0 σD 0 0 0
0 0 σπ 0 0
0 0 0 σθ 0
0 0 0 0 0

 . (A5)

The investment opportunity is then

dQ = (Dt − rPt)dt+ dPt ≡ eQΨdt+ σQdBt, (A6)

by differentiating Equation (??), where eQ and σQ are

eQ = (p0(p4 − r) + p2αππ̄, 1 + p1(p4 − r − αD), p1 + p2(p4− r − απ), p3(p4 − r − αθ), p4(p4 − r − α)) ,

(A7)
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and

σQ =
(
0 p1σD p2σπ p3σθ 0

)
. (A8)

The result implies Lemma 1. QED.

A.2 Proof of Theorem 1

To prove Theorem 1, we conjecture a solution for the portfolio demand of the informed investors

as a linear function of state variables as in Equation (??), and conjecture accordingly the value

function be of the following form,

J i(W i, Dt, πt, θt, At; t) = −e−ρt−rW− 1
2
ΨiTV iΨi

. (A9)

Substituting this into the HJB equation, we obtain

η = f iΨ, (A10)

where

f i =
1

r
(σQσ

T
Q)

−1(eQ − σQσ
T
ΨV

i) (A11)

with V i a symmetric positive satisfying

V iσΨσ
T
ΨV

iT − (σQσ
T
Q)

−1(eQ−σQσ
T
ΨV

i)T (eQ−σQσ
T
ΨV

i)+rV i− (eTΨV
i+V ieΨ)+2kδ

(5)
11 = 0 (A12)

, k ≡ [(r − ρ)− r ln r]− 1
2Tr(σ

T
ΨσΨV

i) and

[δ
(5)
(11)]ij =

{
1, i = j = 1
0, otherwise.

(A13)

This yields Theorem 1. QED.

A.3 Computation of βi’s and γi’s

Based on (??), the regression slope, β ≡ (β1, β2, β3), is given by

β = V ar−1 · Cov, (A14)

where Var ∈ R3×3 and µ ∈ R3×1 be the variance and mean of vector Yt = (Dt, Pt, At), and

Cov ∈ R1×3 the covariance between πt and (Dt, Pt, At). Consider first how how compute V ar(Yt)
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and Cov(πt, Yt). Given the price relation (??), we have Y = FX with

F ≡

 0 0 1 0
p2 p3 p1 p4
0 0 0 1

 . (A15)

Then it follows that

Var = FCF T , µ = FmT , Cov = e1CF T , (A16)

where e1 ≡ (1, 0, 0, 0).

To compute the mean and covariance matrix of Xt = (πt, θt, Dt, At), we, based on (??) and

(??), have the following dynamics,

dπt = απ(π̄ − πt)dt+ σπdB2t,

dθt = −αθθtdt+ σθdB3t,

dDt = (πt − αDDt)dt+ σDdB1t,

dAt = [p0 + p1Dt + p2πt + p3θt + (p4 − α)At]dt,

which is an affine system. Let α1 ≡ α− p4. We now consider the following transform of Xt,

Φ(u, x, t, T ) = Et[e
u·XT ] = eA(t)+B(t)·Xt , (A17)

where A(t) and B(t) satisfy the ODE system (Duffie, Pan and Singleton 2000) below,

dB(t)

dt
= −KT

1 B(t), B(T ) = u, (A18)

dA(t)

dt
= −K0 ·B(t)− 1

2
B(t)TH0B(t), A(T ) = 0, (A19)

with

K0 =


αππ̄
0
0
p0

 , K1 =


−απ 0 0 0
0 −αθ 0 0
1 0 −αD 0
p2 p3 p1 −α1

 , H0 =


σ2
π 0 0 0
0 σ2

θ 0 0
0 0 σ2

D 0
0 0 0 0

 . (A20)

Note that the elements of covariance matrix of Xt are the quadratic terms of Xt in Taylor expansion

of Equation (??).

To solve (??) and (??) analytically, we denote by U and Λ the eigenvectors and eigenvalues of

KT
1 , ie,

UKT
1 = ΛU, U−1U = UU−1 = I, Λ = diag(λ1, ..., λ4). (A21)
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Then, due to the special form of KT
1 , the eigenvalues are all negative,

λ1 = −απ, λ2 = −αθ, λ3 = −αD, λ4 = −α1.

Therefore, we have

Bt = U−1eΛ(T−t)Uu, (A22)

and

At =

∫ t

0
KT

0 Bsds+
1

2

∫ t

0
BT
s H0Bsds

= KT
0 U

−1

[∫ t

0
eΛsds

]
Uu+

1

2
(Uu)T

[∫ t

0
eΛs(U−1)TH0U

−1eΛsds

]
Uu, (A23)

where we have used (??).

Since we are only interested in the limit case when T → ∞, and the elements of Λ are negative,

the only term with non-zero limit in the exponent of Equation (??) is the second term of At in

Equation (??). To compute the second term of At, we define

H ≡
∫ t

0
eΛs(U−1)TH0U

−1eΛsds.

It is easy to show that the elements of H, denoted as Hij for i, j = 1, 2, 3, 4, can be computed as

Hij = − 1

λi + λj
[(U−1)TH0U

−1]ij . (A24)

Then the covariance matrix C of Xt and mean of Xt can be written as

C = UTHU, m = −KT
0 U

−1Λ−1U.

In addition, the mean and covariance of Yt can be computed as in Equation (??). Then the

regression coefficients in (??) can be readily computed. Moreover,

β0 = meT1 − βTµ, σ2
u = e1CeT1 − βT (Var)β. (A25)

Once the coefficients βi’s are determined, by matching the coefficients of both sides of

p2π̂t + p3θ̂t = p2πt + p3θt = Pt − p0 − p1Dt − p4At, (A26)
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we obtain

p2β0 + p3γ0 = p0,

p2β1 + p3γ1 = −p1,

p2β2 + p3γ2 = 1,

p2β3 + p3γ3 = −p4.

(A27)

Hence, we find

γ0 =
−p0 − p2β0

p3
, γ1 =

−p1 − p2β1
p3

, γ2 =
1− p2β2

p3
, γ3 =

−p4 − p2β3
p3

. (A28)

This accomplishes the task.

A.4 Proof of Lemma 2

Given π̂t and θ̂t in (??) and (??), and the dynamics of Λt in Equation (??), we obtain

dPt = p1dDt + dΛt + p4dAt

= p1(π̂t − αDDt)dt+ p1σ̂DdB
u
1t + dΛt + p4dAt

= [q0 + q1Dt + q2Pt + q3At]dt+ p1σ̂DdB
u
1t + σ̂ΛdB

u
2t, (A29)

where

q0 = p1β0 + p2απ(π̄ − β0)− αθp3γ0,

q1 = p1(β1 − αD)− p2απβ1 − p3αθγ1,

q2 = p1β2 − p2απβ2 − p3αθγ2 + p4,

q3 = p1β3 − p2απβ3 − p3αθγ3 − p4α.

Applying further Equations (??), we obtain

q0 = p1β0 + p2αππ̄ + p0(απ + αθ),

q1 = p1(β1 − αD + απ + αθ),

q2 = p1β2 + (p4 − απ − αθ),

q3 = p1β3 + p4(απ + αθ − α).

(A30)
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The parameters σ̂2
D, σ̂

2
Λ and ϱ are defined in Equations (??), (??) and (??), and σ2

u is defined in

Equation (??).

Combined with Equation (??) and

dAt = (Pt − αAt)dt, (A31)

we obtain the dynamics for Ψu = (1, Dt, Pt, At)
T , which follows the following SDE,

dΨu = euψΨ
udt+ σuΨdB

u
t , (A32)

where

euψ =


0 0 0 0
β0 β1 − αD β2 β3
q0 q1 q2 q3
0 0 1 −α

 , (A33)

and

σuψ =


0 0 0 0
0 σ̂D 0 0

0 p1σ̂D + ϱσ̂Λ
√

1− ϱ2σ̂Λ 0
0 0 0 0

 . (A34)

The investment opportunity is

dQ = (Dt − rPt)dt+ dPt ≡ euQΨdt+ σuQdBt, (A35)

obtained via Equation (??), where euQ and σuQ are given by

euQ =
(
q0 1 + q1 q2 − r q3

)
, (A36)

and

σuQ =
(

0 p1σ̂D + ϱσ̂Λ
√

1− ϱ2σ̂Λ 0
)
. (A37)

Then we have the lemma. QED.

A.5 Proof of Theorem 2

To prove Theorem 2, we conjecture a solution for the portfolio demand by the informed investors

as linear function of state variable set Ψ as in Equation (??), and conjecture accordingly the value

function

Ju(W u, Dt, Pt, At; t) = −e−ρt−rW− 1
2
ΨuTV uΨu

. (A38)
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Substituting this into the HJB equation, we obtain

η = fuΨu, (A39)

where

fu =
1

r
(σQσ

T
Q)

−1(eQ − σQσ
T
ΨV

u) (A40)

with V u a symmetric positive definite matrix satisfying

V uσΨσ
T
ΨV

uT−(σQσ
T
Q)

−1(eQ−σQσ
T
ΨV

u)T (eQ−σQσ
T
ΨV

u)+rV u−(eTΨV
u+V ueΨ)+2kδ

(4)
11 = 0, (A41)

k ≡ [(r − ρ)− r ln r]− 1
2Tr(σ

T
ΨσΨV

u) and

[δ
(4)
(11)]ij =

{
1, i = j = 1
0, otherwise.

(A42)

This implies Theorem 2. QED.

A.6 Computation for the Autocovariance

We want to compute the autocovariance of the zero cost stock return defined as

< Pt+τ − Pt, Pt − Pt−τ > .

It suffices to compute the autocovariance of < Pt+τ , Pt > for any τ > 0. Note that the solution to

the MA signal At, according to Equation (??), is

At =

∫ t

−∞
e(p4−α)(t−s)(p0 + p1Ds + p2πs + p3θs)ds, (A43)

that is, At is the moving average of the state variables Dt, πt and θt which are stationary. Note

that in our model, we do not assume a priori any fixed correlation among the state variables, hence

the autocovariance of can be compute as

< Pt+τ , Pt >=< FD
t+τ , F

D
t > + < F π

t+τ , F
π
t > + < F θ

t+τ , F
θ
t >, (A44)

where

FD
t ≡ Dt + p4

∫ t

−∞
Dse

−α1(t−s)ds,

F π
t ≡ πt + p4

∫ t

−∞
πse

−α1(t−s)ds,

F θ
t ≡ θt + p4

∫ t

−∞
θse

−α1(t−s)ds,
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and α1 = α− p4. Hence, we have

< FD
t+τ , F

D
t >

= kD

{
e−αDτ + p4[

e−αDτ

α1 + αD
+

e−α1τ

α1 + αD
+

e−α1τ − e−αDτ

αD − α1
] + p24[

e−α1τ

(αD + α1)α1
+

(e−α1τ − e−αDτ )

(α1 + αD)(αD − α1)
]

}
,

where kD = σ2
D/2αD. The formula for < F π

t+τ , F
π
t > and < F θ

t+τ , F
θ
t > are similar with αD (σD)

replaced by απ (σπ) and αθ (σθ), respectively. Now, defining

g(α, τ) = −(1− e−ατ )2,

we obtain the autocovariance as

< Pt+τ − Pt, Pt − Pt−τ >

= p21[ADg(αD, τ) +BDg(α1, τ)]

+ p22[Aπg(απ, τ) +Bπg(α1, τ)]

+ p23[Aθg(αθ, τ) +Bθg(α1, τ)], (A45)

where

AD = kD

[
1− p4(2α1 + p4)

(α1 + αD)(αD − α1)

]
,

BD = kD
p4(2α1 + p4)

(α1 + αD)(αD − α1)

αD
α1

,

and Aπ,Aθ,Bπ, and Bθ are similarly defined.
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Table 1: Stock Price vs w

The table shows the impact of the fraction of technical investors on the equilibrium stock price,

Pt = p+ pDDt + pππt + pθθt + pmv(Pt − αAt).

The parameters are r = 0.05, ρ = 0.2, π̄ = 0.85, σD = 1.0, σπ = 0.6, σθ = 3.0, απ = 0.2, αθ =

0.4, αD = 1.0. The two panels present the results for two different moving average windows measured

by 1/α with α = 1 and 0.1, respectively.

A. The case of α = 1

w p pD pπ pθ pmv

0 6.8209 0.9524 3.8095 -1.0803 0.0000

0.1 8.9806 1.0148 3.6265 -1.1449 0.0003

0.2 12.0439 1.0887 3.4124 -1.2129 0.0002

0.3 16.0629 1.1758 3.1629 -1.2841 -0.0004

0.4 20.1075 1.2777 2.8731 -1.3586 -0.0016

0.5 21.6172 1.3971 2.5385 -1.4362 -0.0038

0.6 18.9471 1.5362 2.1533 -1.5158 -0.0070

0.7 14.2068 1.6978 1.7122 -1.5968 -0.0118

0.8 9.9461 1.8845 1.2094 -1.6763 -0.0182

0.9 6.8820 2.1002 0.6403 -1.7516 -0.0268

1 4.8052 2.3489 0.0000 -1.8180 -0.0382

B. The case of α = 0.1

0 6.8209 0.9524 3.8095 -1.0803 0.0000

0.1 8.6479 1.0225 3.6589 -1.1644 -0.0070

0.2 10.9427 1.1069 3.4747 -1.2565 -0.0152

0.3 13.4936 1.2093 3.2539 -1.3589 -0.0256

0.4 15.6019 1.3338 2.9918 -1.4736 -0.0395

0.5 16.2126 1.4825 2.6763 -1.5996 -0.0560

0.6 14.9448 1.6605 2.3011 -1.7382 -0.0764

0.7 12.5443 1.8719 1.8561 -1.8883 -0.1013

0.8 10.0112 2.1212 1.3313 -2.0469 -0.1312

0.9 7.8738 2.4191 0.7181 -2.2140 -0.1696

1 6.2033 2.7752 0.0000 -2.3826 -0.2180



Table 2: Asset Allocation by Informed vs Technical Traders

The table shows the allocations of the informed and technical investors,

ηi = gi0 + gi1Dt + gi2πt + gi3θt + gi4MVt,

ηu = gu0 + gu1Dt + gu2Λt + gu3MVt,

where MVt = Pt − αAt, and Λt = Pt − (p − pDDt − pmvMVt). The parameters are r = 0.05, ρ =

0.2, π̄ = 0.85, σD = 1.0, σπ = 0.6, σθ = 3.0, απ = 0.2, αθ = 0.4, αD = 1.0, and α = 1. Panel B shows

the updating rule of Equation (??) and (??) used by technical investors.

A. Allocation Coefficients (g)

Informed Technical

w 1 Dt πt θt MV 1 Dt Λt MV

0 1.0000 0.0000 0.0000 1.0000 0.0000 4.2075 1.0010 -0.4780 0.0007

0.1 0.6012 -0.1062 0.1957 1.0493 -0.0005 4.5892 0.9561 -0.4855 0.0044

0.2 0.0278 -0.2253 0.4184 1.1013 -0.0004 4.8887 0.9011 -0.4903 0.0014

0.3 -0.7446 -0.3583 0.6713 1.1560 0.0006 5.0706 0.8359 -0.4955 -0.0014

0.4 -1.5700 -0.5066 0.9582 1.2136 0.0026 4.8554 0.7599 -0.5010 -0.0039

0.5 -1.9856 -0.6719 1.2832 1.2740 0.0058 3.9855 0.6719 -0.5074 -0.0057

0.6 -1.6424 -0.8560 1.6516 1.3373 0.0104 2.7621 0.5707 -0.5149 -0.0070

0.7 -0.8740 -1.0618 2.0697 1.4032 0.0168 1.8028 0.4550 -0.5242 -0.0072

0.8 -0.1508 -1.2931 2.5460 1.4714 0.0251 1.2877 0.3233 -0.5358 -0.0063

0.9 0.3729 -1.5559 3.0921 1.5410 0.0359 1.0697 0.1729 -0.5510 -0.0040

1 0.7192 -1.8601 3.7258 1.6109 0.0498 1.0000 0.0000 -0.5711 0.0000

B. Updating Rule by Technical Traders

w γ0 γ1 γ2 γ3 β0 β1 β2 β3

0 7.1220 2.0024 -0.6175 -0.0010 0.2292 0.3178 0.0874 -0.0003

0.1 8.6724 1.9929 -0.6187 -0.0064 0.2615 0.3493 0.0804 -0.0019

0.2 10.6822 1.9652 -0.6247 -0.0021 0.2672 0.3794 0.0710 -0.0007

0.3 13.1496 1.9249 -0.6283 0.0022 0.2602 0.4098 0.0612 0.0008

0.4 15.2974 1.8712 -0.6293 0.0065 0.2352 0.4401 0.0511 0.0025

0.5 15.4069 1.8036 -0.6271 0.0105 0.2009 0.4700 0.0406 0.0044

0.6 12.7588 1.7223 -0.6217 0.0140 0.1826 0.4991 0.0300 0.0066

0.7 9.1019 1.6282 -0.6129 0.0169 0.1907 0.5269 0.0194 0.0089

0.8 6.0865 1.5232 -0.6011 0.0191 0.2122 0.5529 0.0088 0.0114

0.9 4.0147 1.4099 -0.5868 0.0204 0.2345 0.5768 -0.0017 0.0141

1 2.6432 1.2921 -0.5711 0.0210 0.2524 0.5986 -0.0121 0.0169



Table 3: Stock Price vs απ

The table shows the impact of the persistence of long run dividend level state variable απ on the

equilibrium stock price,

Pt = p+ pDDt + pππt + pθθt + pmv(Pt − αAt).

The parameters are r = 0.05, ρ = 0.2, π̄ = 0.85, σD = 1.0, σπ = 0.6, σθ = 3.0, αθ = 0.4, αD =

1.0, α = 0.1. The two panels present the results for two different απ for various w, the fraction of

technical investors.

A. The case of απ = 0.1

w p pD pπ pθ pmv

0 -4.6257 0.9524 6.3491 -7.6464 0.0000

0.1 -4.8919 1.1443 5.9320 -8.1713 -0.0050

0.2 -5.1220 1.3519 5.4653 -8.6938 -0.0091

0.3 -5.3205 1.5766 4.9541 -9.2211 -0.0132

0.4 -5.4817 1.8171 4.3926 -9.7421 -0.0163

0.5 -5.6116 2.0754 3.7850 -10.2645 -0.0194

0.6 -5.7112 2.3522 3.1298 -10.7872 -0.0225

0.7 -5.7757 2.6456 2.4227 -11.2981 -0.0246

0.8 -5.8118 2.9579 1.6664 -11.8057 -0.0267

0.9 -5.8207 3.2900 0.8594 -12.3092 -0.0288

1 -5.7971 3.6386 0.0000 -12.7928 -0.0299

B. The case of απ = 0.2

0 6.8209 0.9524 3.8095 -1.0803 0.0000

0.1 8.6479 1.0225 3.6589 -1.1644 -0.0070

0.2 10.9427 1.1069 3.4747 -1.2565 -0.0152

0.3 13.4936 1.2093 3.2539 -1.3589 -0.0256

0.4 15.6019 1.3338 2.9918 -1.4736 -0.0395

0.5 16.2126 1.4825 2.6763 -1.5996 -0.0560

0.6 14.9448 1.6605 2.3011 -1.7382 -0.0764

0.7 12.5443 1.8719 1.8561 -1.8883 -0.1013

0.8 10.0112 2.1212 1.3313 -2.0469 -0.1312

0.9 7.8738 2.4191 0.7181 -2.2140 -0.1696

1 6.2033 2.7752 0.0000 -2.3826 -0.2180



Table 4: Stock Price vs σπ

The table shows the impact of moving average parameter α on the equilibrium stock price,

Pt = p+ pDDt + pππt + pθθt + pmv(Pt − αAt).

The parameters are r = 0.05, ρ = 0.2, π̄ = 0.85, σD = 1.0, απ = 0.2, σθ = 3.0, αθ = 0.4, αD = 1.0,

and α = 0.1. The moving average window is measured by 1/α. The two panels present the results

for two different σπ’s for various w, the fraction of technical investors.

A. The case of σπ = 0.8

w p pD pπ pθ pmv

0 2.7574 0.9524 3.8095 -3.0589 0.0000

0.1 2.7623 1.0569 3.5380 -3.2505 0.0157

0.2 2.6579 1.1810 3.2649 -3.4967 0.0253

0.3 2.4217 1.3270 2.9796 -3.8034 0.0301

0.4 2.0582 1.4982 2.6754 -4.1803 0.0301

0.5 1.5911 1.6969 2.3432 -4.6341 0.0263

0.6 1.0538 1.9250 1.9751 -5.1708 0.0196

0.7 0.4749 2.1863 1.5652 -5.8013 0.0099

0.8 -0.1307 2.4806 1.1041 -6.5258 -0.0010

0.9 -0.7580 2.8118 0.5852 -7.3560 -0.0132

1 -1.4083 3.1785 0.0000 -8.2901 -0.0246

B. The case of σπ = 0.6

w p pD pπ pθ pmv

0 6.8209 0.9524 3.8095 -1.0803 0.0000

0.1 8.6479 1.0225 3.6589 -1.1644 -0.0070

0.2 10.9427 1.1069 3.4747 -1.2565 -0.0152

0.3 13.4936 1.2093 3.2539 -1.3589 -0.0256

0.4 15.6019 1.3338 2.9918 -1.4736 -0.0395

0.5 16.2126 1.4825 2.6763 -1.5996 -0.0560

0.6 14.9448 1.6605 2.3011 -1.7382 -0.0764

0.7 12.5443 1.8719 1.8561 -1.8883 -0.1013

0.8 10.0112 2.1212 1.3313 -2.0469 -0.1312

0.9 7.8738 2.4191 0.7181 -2.2140 -0.1696

1 6.2033 2.7752 0.0000 -2.3826 -0.2180



Table 5: Stock Price vs Moving Average Window: w = 0.1

The table shows the impact of moving average parameter α on equilibrium stock price, which is

Pt = p+ pDDt+ pππt+ pθθt+ pmv(Pt−αAt). The parameters are r = 0.05, ρ = 0.2, π̄ = 0.85, σD =

1.0, σπ = 0.8, σθ = 3.0, απ = 0.5, αθ = 0.4, αD = 1.0. The moving average window is measured by

1/α. The fraction of technical investors is w = 0.1.

α p pD pπ pθ pmv

0.1 20.2743 0.9479 1.6396 -0.3808 0.0234

0.5 21.1403 0.9631 1.6655 -0.3869 0.0083

1 21.6564 0.9668 1.6726 -0.3894 0.0052

5 22.9756 0.9708 1.6822 -0.3936 0.0015

12 23.4179 0.9716 1.6843 -0.3947 0.0007

Table 6: Volatility and risk premium

The table shows the impact of the moving average parameter α on the equilibrium stock price

volatility and long run risk premium. The parameters are r = 0.05, ρ = 0.2, π̄ = 0.85, σD =

1.0, σπ = 0.8, σθ = 3.0, απ = 0.5, αθ = 0.4, αD = 1.0. The moving average window is measured by

1/α. The fraction of technical investors is w = 0.1.

α = 1 α = 0.1

w σp RP σp RP

0 4.0786 0.0282 4.0786 0.0282

0.1 4.1918 0.0158 4.2207 0.0173

0.2 4.3155 0.0036 4.3810 0.0073

0.3 4.4507 -0.0070 4.5620 -0.0008

0.4 4.5987 -0.0140 4.7660 -0.0059

0.5 4.7604 -0.0159 4.9935 -0.0070

0.6 4.9359 -0.0115 5.2434 -0.0036

0.7 5.1244 -0.0003 5.5109 0.0041

0.8 5.3222 0.0176 5.7865 0.0157

0.9 5.5240 0.0423 6.0551 0.0306

1 5.7198 0.0750 6.2951 0.0493



Table 7: Predictive Regression of the S&P500 on MA

The table reports the predictive regression of the S&P500 monthly returns on the moving averages

of past daily prices with lag length L days. The data are from January 1963 and December 2012.

The Newey-West robust t-statistics are in parentheses and significance at the 1% and 5% levels is

given by an ∗∗ and an ∗, respectively.

α β adj. R2(%)

Moving Average of Daily Returns

MA(10) 0.006∗∗∗ 2.018∗∗ 0.636

(3.11) (2.20)

MA(20) 0.006∗∗∗ 1.255 0.081

(3.22) (1.22)

MA(50) 0.006∗∗∗ 0.892 -0.101

(3.22) (0.63)

MA(100) 0.005∗∗∗ 3.168∗ 0.294

(2.78) (1.66)

MA(200) 0.006∗∗∗ 1.476 -0.114

(2.87) (0.57)



Table 8: Predictive Regression of the S&P500 on Lagged Returns

The table reports the predictive regression of the S&P500 monthly returns on the lagged monthly

returns, and on the moving average of the lagged monthly returns, respectively. The data are

from January 1963 and December 2012. The Newey-West robust t-statistics are in parentheses and

significance at the 1% and 5% levels is given by an ∗∗ and an ∗, respectively.

α β adj. R2(%)

Panel A: Past Monthly Returns

L2 0.006∗∗∗ -0.026 -0.027

(3.60) (-0.85)

L6 0.006∗∗∗ -0.047 0.126

(3.67) (-1.52)

L12 0.006∗∗∗ 0.011 -0.085

(3.46) (0.35)

Panel B: Moving Average of Monthly Returns

MA(2) 0.006∗∗∗ 0.056 0.073

(3.29) (1.33)

MA(6) 0.006∗∗∗ 0.014 -0.094

(3.36) (0.19)

MA(12) 0.005∗∗∗ 0.127 0.054

(2.88) (1.25)



Figure 1: Autocovariance of Price Return

This figure shows the autocovariance of price return defined as

<
Pt+τ − Pt

τ
,
Pt − Pt−τ

τ
>,

where τ is the investment horizon. The autocovariance is positive for short horizon τ < 0.5 and

becomes negative over longer horizon. The parameters are r = 0.05, ρ = 0.2, π̄ = 0.85, σD =

1.0, σπ = 0.6, σθ = 3.0, απ = 0.2, αθ = 0.4, αD = 1, α = 1 The moving average window is measured

by 1/α. The fraction of technical investors is w = 0.1.
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